Cooperation between phenotypic plasticity and genetic mutations can account for the cumulative selection in evolution

نویسندگان

  • Ken Nishikawa
  • Akira R. Kinjo
چکیده

We propose the cooperative model of phenotype-driven evolution, in which natural selection operates on a phenotype caused by both genetic and epigenetic factors. The conventional theory of evolutionary synthesis assumes that a phenotypic value (P) is the sum of genotypic value (G) and environmental deviation (E), P=G+E, where E is the fluctuations of the phenotype among individuals in the absence of environmental changes. In contrast, the cooperative model assumes that an evolution is triggered by an environmental change and individuals respond to the change by phenotypic plasticity (epigenetic changes). The phenotypic plasticity, while essentially qualitative, is denoted by a quantitative value F which is modeled as a normal random variable like E, but with a much larger variance. Thus, the fundamental equation of the cooperative model is given as P=G+F where F includes the effect of E. Computer simulations using a genetic algorithm demonstrated that the cooperative model realized much faster evolution than the evolutionary synthesis. This accelerated evolution was found to be due to the cumulative evolution made possible by a ratchet mechanism due to the epigenetic contribution to the phenotypic value. The cooperative model can well account for the phenomenon of genetic assimilation, which, in turn, suggests the mechanism of cumulative selection. The cooperative model may also serve as a theoretical basis to understand various ideas and phenomena of the phenotype-driven evolution such as genetic assimilation, the theory of facilitated phenotypic variation, and epigenetic inheritance over generations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cooperation between genetic mutations and phenotypic plasticity can bypass the Weismann barrier: The cooperative model of evolution

The Weismann barrier, or the impossibility of inheritance of acquired traits, comprises a foundation of modern biology, and it has been a major obstacle in establishing the connection between evolution and ontogenesis. We propose the cooperative model based on the assumption that evolution is achieved by a cooperation between genetic mutations and acquired changes (phenotypic plasticity). It is...

متن کامل

Plasticity, canalization, and developmental stability of the Drosophila wing: joint effects of mutations and developmental temperature.

The phenotypic effects of genetic and environmental manipulations have been rarely investigated simultaneously. In addition to phenotypic plasticity, their effect on the amount and directions of genetic and phenotypic variation is of particular evolutionary importance because these constitute the material for natural selection. Here, we used heterozygous insertional mutations of 16 genes involv...

متن کامل

Phenotypic Plasticity and Selection: Nonexclusive Mechanisms of Adaptation

Selection and plasticity are two mechanisms that allow the adaptation of a population to a changing environment. Interaction between these nonexclusive mechanisms must be considered if we are to understand population survival. This review discusses the ways in which plasticity and selection can interact, based on a review of the literature on selection and phenotypic plasticity in the evolution...

متن کامل

The consequences of phenotypic plasticity for ecological speciation.

We use an individual-based numerical simulation to study the effects of phenotypic plasticity on ecological speciation. We find that adaptive plasticity evolves readily in the presence of dispersal between populations from different ecological environments. This plasticity promotes the colonization of new environments but reduces genetic divergence between them. We also find that the evolution ...

متن کامل

The role of phenotypic plasticity in driving genetic evolution.

Models of population divergence and speciation are often based on the assumption that differences between populations are due to genetic factors, and that phenotypic change is due to natural selection. It is equally plausible that some of the differences among populations are due to phenotypic plasticity. We use the metaphor of the adaptive landscape to review the role of phenotypic plasticity ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2014